Flask-Via
Release 2014.05.19

May 19, 2014

Contents

Flask-Via, Release 2014.05.19

Inspired by the Django URL configuration system, Flask—-Via is designed to add similar functionality to Flask
applications which have grown beyond a simple single file application.

Contents 1

https://travis-ci.org/thisissoon/Flask-Via
https://coveralls.io/r/thisissoon/Flask-Via?branch=master
https://landscape.io/github/thisissoon/Flask-Via/master
https://pypi.python.org/pypi/Flask-Via
https://pypi.python.org/pypi/Flask-Via
https://pypi.python.org/pypi/Flask-Via

Flask-Via, Release 2014.05.19

2 Contents

CHAPTER 1

Example

from flask import Flask
from flask.ext.via import Via
from flask.ext.via.routers.default import Functional

app = Flask(__name_)

def foo (bar=None) :
return ’'Foo View!’

routes = [
Functional (' /foo’, foo),
Functional (/ /foo/<bar>’, foo, endpoint=’foo2’),

via = Via()
via.init_app (app, route_module=’flask_via.examples.basic’)

if _ name_ == "_ _main_ ":
app.run (debug=True)

Flask-Via, Release 2014.05.19

4 Chapter 1. Example

CHAPTER 2

Why?

Growing your application can be quite difficult when it’s not always clear where and how your routes are discovered.
This can lead to a cluttered application factory method when all your routes are defined at application creation -
resulting in code which is difficult to maintain, not to mention messy.

A better solution is to define your routes in a routes . py and automatically load them at application start up. This is
what Flask-Via helps to do.

Third party Flask extensions don’t always follow the same conventions for adding routes to an application, so
Flask-Via has been designed to be easy for developers to write their own custom routers. For an example of
this, take a look at the bundled Flask—Rest ful Resource router.

If you do write a custom router that is useful to you, it will probably be useful to someone else so please do contribute
back :)

http://flask-via.thisissoon.com/en/latest/api.html#flask_via.routers.restful.Resource

Flask-Via, Release 2014.05.19

6 Chapter 2. Why?

CHAPTER 3

Links

¢ Documentation: http://flask-via.thisissoon.com
* CI: https://travis-ci.org/thisissoon/Flask-Via

» Coverage: https://coveralls.io/r/thisissoon/Flask-Via?branch=master

http://flask-via.thisissoon.com
https://travis-ci.org/thisissoon/Flask-Via
https://coveralls.io/r/thisissoon/Flask-Via?branch=master

Flask-Via, Release 2014.05.19

8 Chapter 3. Links

CHAPTER 4

Usage Documentation

4.1 Quickstart

4.1.1 Installation

Flask-Via is simple to install, just use your favourite python package manage, for example pip:

$ pip install Flask-Via

4.1.2 Basic Application

Once we have installed F1lask-Via we need to perform the following steps:

1. Create some view functions

2. Create a list of routes

3. Initialise flask_via.Viaandcall flask_via.Via.init_app ()
The following example code performs the above steps with key lines emphasised.

from flask import Flask
from flask.ext.via import Via
from flask.ext.via.routers.default import Functional

app = Flask(__name_)

def foo (bar=None) :
return ’'Foo View!’

routes = [
Functional (' /foo’, foo),
Functional (' /foo/<bar>", foo, endpoint=’'foo2’),

via = Vial()

via.init_app (app, route_module='path.to.here’)

if _ name_ == "__main_ ":
app.run (debug=True)

Flask-Via, Release 2014.05.19

Lines 10-13 show how routes are defined in a list using the basic flask router class
(flask_via.routers.default.Functional).

Line 16 shows how we Flask—-Via looks for where routes are defined, this can be set as we have done above or
using the VIA_ ROUTES_MODULE application configuration variable.

4.2 Configuration

The following configuration variables can be set in your flask application config.

VIA_ROUTES_MODULE This should be a string with the value of a python dotted path
to your root module which contains routes, e.g:
VIA_ROUTES_MODULE = ’vyourapp.routes’

VIA_ROUTES_NAME By default Via will look for a variable called routes within

the routes module, if you want to call it something different
then use this config variable, e.g:
VIA_ROUTES_NAME = ’"urls’

4.3 Route Discovery

Routes can live anywhere you want them too, as long as they are importable.
You can tell Flask-Via where to find routes in a couple of ways:
1. VIA_ROUTES_MODULE application configuration variable
2. routes_module argument passed into init_app in your application factory method.

You can use which ever you prefer.

4.3.1 Using Application Config

from flask import Flask
from flask.ext.via import Via

app = Flask(__name_)
app.config[’VIA_ROUTES_MODULE’] = ’yourapp.routes’

via = Vial()
via.init_app (app)

n

if _ name_ == "_ _main_ ":
app.run (debug=True)

4.3.2 Using init_app setting routes_module

from flask import Flask
from flask.ext.via import Via

app = Flask(__name__)

10 Chapter 4. Usage Documentation

Flask-Via, Release 2014.05.19

via = Vial()
via.init_app (app, routes_module=’yourapp.routes’)

".

if _ name_ == "_ _main__
app.run (debug=True)

4.3.3 Route Module

The routes module should define a 11 st of routes, by default this list is called routes:

routes = [
Functional(’/’, home),
Functional (’ /about’, about),

]

You can configure Flask-Via to look for any variable name of your choosing, this is done by passing an argument
named routes_name into init_app, for example:

via = Vial()
via.init_app (app, routes_name='urls’)

You can also make this setting permanent by using the VIA_ ROUTES_NAME configuration variable:

app = Flask(__name_)

app.config[’VIA_ROUTES_MODULE’] = ’yourapp.routes’
app.config[’VIA ROUTES_NAME’] = ’urls’
via = Vial()

via.init_app (app)

Note: If you set VIA_ROUTES_NAME overriding this using routes_name is still possible however this does not
propagate over any routes which are included.

4.3.4 Application Example

Assume we have the following application structure:

/path/to/foo
- __init___.py
— routes.py
- views.py

- app.py

Within views.py we have:

def home () :
return ’'Hello world!’

def about () :
return ’'The world is big’

Within routes.py we have:

from flask.ext.via.routers import default

4.3. Route Discovery 11

Flask-Via, Release 2014.05.19

urls = [
default.Functional (’/’, home),
default.Functional (' /about’, about),
]

Within app . py we have:

from flask import Flask
from flask.ext.via import Via

app = Flask(__name__)
app.config[’VIA_ ROUTES_MODULE’] = ’foo.routes’

via = Vial()
via.init_app (app, routes_name='urls’)

if _ name_ == "__main__ ":
app.run (debug=True)

You will see we used routes_name when calling via.init_app to tell Via what variable to look for within the
routes module.

4.4 Routers

Here you will find the documentation for each bundled router provided by Flask-Via.

4.4.1 Flask Routers

These routers are designed to work with standard flask functional and class based pluggable views.

Functional Router

The flask_via.routers.default.Functional router handles basic functional based view routing.
Arguments:

e url: The url for this route, e.g: /foo

e func: The view function
Keyword Arguments:

¢ endpoint: (Optional) A custom endpoint name, by default flask uses the view function name.

Example

from flask.ext.via.routers.default import Functional

def foo (bar=None) :
return ' foo’

routes = [
Functional (' /’, foo),

12 Chapter 4. Usage Documentation

Flask-Via, Release 2014.05.19

Functional (/ /<bar>’, foo, endpoint=’foobar’),

Pluggable Router

The flask_via.routers.default.Pluggable router handles views created using Flasks pluggable views.

Arguments:

e url: The url for this route, e.g: /foo

* class: The Flask Pluggable View Class

* name: The name of the view, aka: endpoint
Keyword Arguments:

* «xxkwargs: Arbitrary keyword arguments, for example methods

Example

from flask.views import MethodView
from flask.ext.via.routers.default import Pluggable

class FooView (MethodView) :

def get (self, bar=None):
return ’foo’

routes = [

Plugganle(’/’, FooView, ’'foo’),
Plugganle ('’ /<bar>’, FooView, ’foobar’),

4.4.2 Flask-Restful Routers

Flask-Restful is an awesome framework for building REST API’s in Flask but has it’s own way of adding routes
to the Flask application, so tere is a little bit of extra work required when bootstrapping your application:

from flask import Flask
from flask.ext import restful
from flask.ext.via import Via

app Flask (__name_)
api = restful.Api (app)

via = Via()

via.init_app(
app ’
routes_module=’yourapp.routes’,
restful_api=api)

if _ name_ == '__ _main__ ’:

app.run (debug=True)

4.4. Routers

13

Flask-Via, Release 2014.05.19

Note that on line 12 we passed a keyword argument called restful_api with the
value being the Flask—-Restful api object into via.init_app. This will allow the
flask_via.routers.restful.Resource router to add resouce routes to the api.

Resouce Router

Warning: Before using this router be sure you have read the section directly above.

The flask_via.routers.restful.Resource router allows us to register Flask—Restful resources to
your application.

Arguments:

e url: The url for this route, e.g: /foo

e resource: AFlask-Restful Resource class
Keyword Arguments:

* endpoint: (Optional) A custom endpoint name

Example

class FooResource (restful.Resource) :

def get (self, bar=None):
return {'hello’: ’"world’}

routes = [
Resource ('’ /’, FooResource)
Resource (' /<bar>’, FooResource, endpoint=’foobar’)

4.4.3 Flask-Admin Routers

As with the Flask—-Rest ful router you need to pass an extra argumentto via.init_app called flask_admin
which should hold the F1lask—Admin instance.

from flask import Flask
from flask.ext.admin import Admin
from flask.ext.via import Via

app = Flask(_name_)

admin = Admin (name=’'Admin’)
admin.init_app (app)

via = Via()

via.init_app (
app,
routes_module=’ flask_via.examples.admin’,
flask_admin=admin)

if _ name_ == '_ _main__ ’:
app.run (debug=True)

14 Chapter 4. Usage Documentation

Flask-Via, Release 2014.05.19

Note that line 14 is where the instantiated F1ask—-Admin instance gets passed into via.init_app.

Admin Router

Warning: Before using this router be sure you have read the section directly above.

The flask_via.routers.admin.AdminRoute router allows us to register Flask—Admin views to your
application. Flask-Admin handles defining urls for its views so a url argument is not requied, all is required is the
Flask-Admin view class.

Arguments:

e view: An instantiated Flask—Admin view

Example

class FooAdminView (BaseView) :

Qexpose (' /")
def index(self):
return ’foo’

@expose (’ /bar’)
def index(self):
return ’'bar’

routes = [
AdminRoute (FooAdminView (name='Foo’))

4.5 Including

Sometimes you don’t want to define all your routes in one place, you want to be modular right!? You can do that too
with Flask-Via.

4.5.1 Include Router

The most basic way of including other routes is to use the flask_via.routers.Include router. This is not a
intended replacement or implementation of Flask blueprints, just a simple way of putting routes somewhere else in
your application.

Arguments:
e routes_module: Python dotted path to the route module as a string.
Keyword Arguments:

* routes_name: (Optional) If you have not called the list of routes in the moduke routes you can set
that here, for example urls.

e url_prefix: (optional) Add a url prefix to all routes included

* endpoint: (optional) Add a endpoint prefix to all routes included

4.5. Including 15

Flask-Via, Release 2014.05.19

Example

Assume the following application structure:

/path/to/foo
- bar/
- __init__ .py
— routes.py
- views.py
- __int__ _.py
- routes.py

In the top level routes.py we would have:

from flask.ext.via.routers import Include

routes = [
Include (' foo.bar.routes’”)

]

In the foo.routes we would have:

from flask.ext.via.routes import default
from foo.bar.views import some_view

routes = [
default.Functional (’/ /bar’, some_view)

]

You can see this in action with the Small Application Example.

URL Prefixes

The flask_via.routers.Include class also allows you to add a url_prefix similar to blueprints.
The following routers support the url_prefix being passed to their add_to_app methods:

e flask_via.routers.default.Functional

e flask_via.routers.default.Pluggable

e flask_via.routers.default.Blueprint

Example

Assume the same application structure as in the above examples except the top level routes . py now looks like this:

from flask.ext.via.routers import Include
routes = [
Include (' foo.bar.routes’, url_prefix='/foo’)

]

This will result in the url to the view becoming /foo/bar instead of /bar.

16 Chapter 4. Usage Documentation

https://github.com/thisissoon/Flask-Via/tree/master/flask_via/examples/small

Flask-Via, Release 2014.05.19

Endpoints
The flask_via.routers.Include router also allows you to add endpoint prefixes to your included routes,
much like blueprints. This is supported by:

e flask_via.routers.default.Functional

e flask_via.routers.default.Pluggable

e flask_via.routers.default.Blueprint

Example

We will assume the same application structure as we have in the previous example applications. The top level
routes.py can be altered as followes:

from flask.ext.via.routers import Include

routes = [
Include (' foo.bar.routes’, url_prefix=’'/foo’, endpoint=’foo’)

]

We can now call url_for with foo.bar which would generate / foo/bar.

4.5.2 Blueprint Router

Flask Blueprints are also supported allowing Flask-Via.

You can either let F1ask~-Via automatically create and register your blueprint or create an instance of your blueprint
and pass that to the Blueprint router.

See also:

e flask_via.routers.default.Blueprint.

Note: All routes will be added to the blueprint rather than the flask application, this applies to any routes included
using the Include router.

Arguments:

* name_or_instance: A Blueprint name or a Blueprint instance
Keyword Arguments:

* module: Python module path to blueprint module, defaults to None

e routes_module_name: The module Flask-Via will look for within the blueprint module which
contains the routes, defaults to routes

* routes_name: If you have not called the list of routes in the module routes you can set that here, for
example urls.

* static_folder: Path to static files for blueprint, defaults to None

e static_url_path: URL path for blueprint static files, defaults to None

* template_folder: Templates folder name, defaults to None

e url_prefix: URL prefix for routes served within the blueprint, defaults to None

¢ subdomain : Sub domain for blueprint, defaults to None

4.5. Including 17

Flask-Via, Release 2014.05.19

e url_defaults: Callback function for URL defaults for this blueprint. It’s called with the endpoint and
values and should update the values passed in place, defaults to None.

Automatic Example

Let us assume we have the following application structure:

/path/to/foo

- bar/

- templates/
- foo.html

- __init__ .py
— routes.py
- views.py

- __int__ .py

— routes.py

In the above structure bar is a Flask blueprint which we wish to add to our flask application, so our top level routes
would look like this:

from flask.ext.via.routers.default import Blueprint

routes = [
Blueprint ("bar’, ’"foo.bar’, template_folder='templates’)
]

You will note we give the blueprint a name and pass the top level module path to the blueprint rather than a path to the
routes file.

In our blueprints views we can define routes as normal:

from flask.ext.via.routes import default
from foo.bar.views import some_view

routes = [
default.Functional (' /bar’, some_view)

Instance Example

If you do not wish Flask-Via to automatically create the Blueprint instance you can pass a Blueprint instance as
the first and only argument into the.

In the above example we would alter the contents of /path/to/foo/bar/routes.py as follows:

from flask import Blueprint
from flask.ext.via.routes import default
from foo.bar.views import some_view

blueprint = Blueprint ('bar’, ’'foo.bar’, template_folder='templates’)
routes = [
default.Functional (’/ /bar’, some_view)

]

And now in our /path/to/foo/routes.py we would import the blueprint and pass it into the router:

18 Chapter 4. Usage Documentation

Flask-Via, Release 2014.05.19

from foo.bar.routes import blueprint
from flask.ext.via.routers.default import Blueprint

routes = [

Blueprint (blueprint)
]

Of course you can crate your Blueprint instance where ever you wish.

Including Blueprints

You can use the flask_via.routers.Include router to also include blueprints, you can even add
url_prefix to prefix the blueprints url_prefix, crazy eh?

Example

Let us assume we have the same application structure as in the earlier blueprint examples, except our top level
routes.py now looks like this:

from flask.ext.via.routers import default, Include

routes = |
Include (

" foo.routes’,
routes_name='api’,
url_prefix=’/api/vl’,
endpoint="api.vl’)

]

api = [

default.Blueprint ("bar’, ’foo.bar’, url_prefix=’'/bar’)

These don’t exist but just for illustraion purposes

default.Blueprint (‘baz’, "foo.baz’, url_prefix’/baz’)

default.Blueprint (' fap’, ’foo.fap’, url_prefix’/fap’)
1

Here we will include all the routes defined in the api list which are all blueprints, each blueprint will be registered
withaurl_prefixof /api/v1 as well their url prefixes for the blueprint, so the above blueprints will be accessible
on the followibg urls:

e /api/vl/bar
* /api/vl/baz
* /api/vl/fap
If each of these blueprints had a route defined with a url of /bar these would be accessed on the following urls:
e /api/vl/bar/bar
e /api/vl/baz/bar
e /api/vl/fap/bar

Hopefully you can see from this that flask_via.routers.Include coupled with
flask_via.routers.default.Blueprint can offer some potentially powerful routing options for
your application.

4.5. Including 19

Flask-Via, Release 2014.05.19

You will also notice we used the endpoint keyword agument in the Include. This means our urls can also be reversed
using url_for, for example:

LYY

«+ “‘url_for ('api.vl.bar.bar’) would return: ‘‘/api/vl/bar/bar‘‘
* “‘url_for("api.vl.baz.bar’) ‘" would return: ‘‘/api/vl/baz/bar‘®
* “‘url_for ("api.vl.fap.bar’) "' would return: ‘‘/api/vl/fap/bar‘®

4.6 Examples

Here you can find examples of how to use Flask—-Via. All examples are on GitHub.
* Basic Example
* Pluggable Example
* Mixed Routers Example Example
* Basic Restful Example
* Basic Admin Example
* Small Application Example
* Include Application Example

* Blueprint Application Example

20 Chapter 4. Usage Documentation

https://github.com/thisissoon/Flask-Via/blob/master/flask_via/examples/basic.py
https://github.com/thisissoon/Flask-Via/blob/master/flask_via/examples/pluggable.py
https://github.com/thisissoon/Flask-Via/blob/master/flask_via/examples/mixed.py
https://github.com/thisissoon/Flask-Via/blob/master/flask_via/examples/restful.py
https://github.com/thisissoon/Flask-Via/blob/master/flask_via/examples/admin.py
https://github.com/thisissoon/Flask-Via/tree/master/flask_via/examples/small
https://github.com/thisissoon/Flask-Via/tree/master/flask_via/examples/include
https://github.com/thisissoon/Flask-Via/tree/master/flask_via/examples/blueprints

CHAPTER 5

Reference

5.1 API

5.1.1 flask via

class flask_via.RoutesImporter
Bases: object

Handles the import of routes module and obtaining a list of routes from that module as well as loading each
route onto the application

New in version 2014.05.06.

include (routes_module, routes_name)
Imports a routes module and gets the routes from within that module and returns them.

Parameters
* routes_module (str) — Python dotted path to routes module
* routes_name (str) — Module attribute name to use when attempted to get the routes
Returns List of routes in the module
Return type list
Raises
e ImportError — If the route module cannot be imported
e AttributeError - If routes do not exist in the moduke

load (app, routes, **kwargs)
Loads passed routes onto the application by calling each routes add_to_app method which must be
implemented by the route class.

class flask_via.Via
Bases: flask_via.RoutesImporter

The core class which kicks off the whole registration processes.

New in version 2014.05.06.

21

Flask-Via, Re

lease 2014.05.19

Example

from flask import Flask
from flask.ext.via import Via
from flask.ext.via.routers.flask import Basic

app = Flask(__name_)

def foo (bar=None) :
return 'Foo View!’

routes = |

Basic ('’ /foo’, foo),

Basic (' /foo/<bar>’, foo, endpoint=’foo2’),
]
via = Via()
via.init_app (app, routes_module='path.to.here’)
if name == " main_":

app.run (debug=True)

init_app (app, routes_module=None, routes_name=None, **kwargs)
Initialises Flask extension. Bootstraps the automatic route registration process.

Changed in version 2014.05.19: Replace NotImplementedError with
ImproperlyConfigured routes_name keyword argument default value set to None
routes_name can now be configured using VIA_ROUTES_NAME app configuration variable. If
routes_name keyword argument and VIA_ROUTES_NAME are not configured the default will be
routes.

*Parameters app (flask.app.Flask) — Flask application instance

Keyword Arguments

* route_module (str, optional) — Python dotted path to where routes are defined, defaults to
None

* routes_name (str, optional) — Within the routes module look for a variable of this name,
defaults to None

o **kwargs — Arbitrary keyword arguments passed to add_url_rule

Raises ImproperlyConfigured — If VIA_ROUTES_MODULE is not configured in ap-
pluication config and route_module keyword argument has not been provided.

5.1.2 flask_via.exceptions

Custom exceptions which can be thrown by Flask-Via.

exception flask_via.exceptions.ImproperlyConfigured
Bases: exceptions.Exception

Raised in the event F1ask—-Via has not been properly configured

22

Chapter 5. Reference

Flask-Via, Release 2014.05.19

5.1.3 flask via.routers

Base router classes and utilities.

class flask_via.routers.BaseRouter
Bases: object

Base router class all routers should inherit from providing common router functionality.

New in version 2014.05.06.

Example

from flask.ext.via.routers import BaseRouter
class MyRouter (BaseRouter) :

def _ _init__ (self, arqg):
def add_to_app(self, app):

__init__ ()
Constructor should be overridden to accept specific arguments for the router.

Raises Not ImplementedError — If method not implemented

add_to_app (app, **kwargs)
Method all routers require, which handles adding the route to the application instance.

Raises Not ImplementedError — If method not implemented

class flask_via.routers.Include (routes_module, routes_name=None, url_prefix=None, end-

point=None)
Bases: flask_via.routers.BaseRouter, flask_via.RoutesImporter

Adds the ability to include routes from other modules, this can be handy when you want to break out your routes
into separate files for sanity.

New in version 2014.05.06.

Note: This is not a implementation of Flask blueprints

__init__ (routes_module, routes_name=None, url_prefix=None, endpoint=None)
Constructor for Include router, taking the passed arguments and storing them on the instance.

Changed in version 2014.05.08: url_prefix argument added
Changed in version 2014.05.19: routes_name keyword argument default value set to None
endpoint keyword argument added
*Parameters routes_module (s7r) — Python dotted path to the routes module
Keyword Arguments

* routes_name (str, optional) — Name of the variable holding the routes in the module,
defaults to routes

* url_prefix (st;; optional) — Adds a url prefix to all routes included by the router, defaults
to None

5.1. API 23

Flask-Via, Release 2014.05.19

* endpoint (str; optional) — Prefix an endpoint to all routes included, defaults to None

add_to_app (app, **kwargs)
Instead of adding a route to the flask application this will include and load routes similar, same as in the
flask_via.Via class.abs

Changed in version 2014.05.08: url_prefix now injected into kwargs when loading in routes

Changed in version 2014.05.19: endpoint now injects into kwargs when loading in routes

*Parameters
* app (flask.app.Flask) — Flask application instance

o *¥*kwargs — Arbitrary keyword arguments passed into init_app

5.1.4 flask_via.routers.default

A set of flask specific router classes to be used when defining routes.

Example

from flask.ext.via.routes.flask import Basic, Pluggable
from yourapp.views import BarView, foo_view

routes = [

]

Basic ('’ /foo’, "foo’, foo_view),
Pluggable ('’ /bar’, BarView, ’'bar’),

class flask_via.routers.default.Basic (url, func, endpoint=None)

Bases: flask_via.routers.default.Functional
This is deprecated and will be removed in the next release. Please use Functional.
New in version 2014.05.06.

Deprecated since version 2014.05.19.

class flask_via.routers.default.Blueprint (name_or_instance, module=None,
routes_module_name="routes’,
routes_name=None, static_folder=None,
static_url_path=None, template_folder=None,
url_prefix=None, subdomain=None,

url_defaults=None)
Bases: flask_via.routers.BaseRouter, flask_via.RoutesImporter

Registers a flask blueprint and registers routes to that blueprint, similar to flask_via.routers.Include.

New in version 2014.05.06.

Example

Auto creates Blueprint instance*

24

Chapter 5. Reference

Flask-Via, Release 2014.05.19

from flask.ext.via.routers import default

routes = [
default.Blueprint (' foo’, ’flask_via.examples.blueprints.foo’)

]

Pass existing Blueprint instance*

from flask import Blueprint
from flask.ext.via.routers import default

blueprint = Blueprint (' foo’, __name_)

routes = [
default.Blueprint (blueprint)
]

__init__ (name_or_instance, module=None, routes_module_name="routes’, routes_name=None,
static_folder=None, static_url_path=None, template_folder=None, url_prefix=None, sub-

domain=None, url_defaults=None)
Constructor for blueprint router.

Changed in version 2014.05.19: Replaced name with name_or_instance argument which al-
lows the router to take an already instantiated blueprint instance. module argument optional when
instance is passed as the first argument routes_name keyword argument default value set to None
*Parameters name (st7; flask.blueprints.Blueprint) — Blueprint name or a Blueprint class instance
Keyword Arguments
* module (str) — Python dotted path to the blueprint module

¢ routes_module_name (str; optional) — The module Flask-Via will look for within the
blueprint module which contains the routes, defaults to routes

* routes_name (str, optional) — Name of the variable holding the routes in the module,
defaults to None

« static_folder (str, optional) — Path to static files for blueprint, defaults to None
« static_url_path (str; optional) — URL path for blueprint static files, defaults to None
 template_folder (str; optional) — Templates folder name, defaults to None

 url_prefix (str, optional) — URL prefix for routes served within the blueprint, defaults to
None

 subdomain (st7; optional) — Sub domain for blueprint, defaults to None

url_defaults (function, optional) — Callback function for URL defaults for this blueprint.
It’s called with the endpoint and values and should update the values passed in place,
defaults to None.

add_to_app (app, **kwargs)
Creates a Flask blueprint and registers routes with that blueprint, this means any routes defined will be
added to the blueprint rather than the application.

Parameters
* app (flask.app.Flask) — Flask application instance

o *¥*kwargs — Arbitrary keyword arguments passed into init_app

5.1. API 25

Flask-Via, Release 2014.05.19

blueprint (**kwargs)
Returns a Flask Blueprint instance, either one provided or created here.

Changed in version 2014.05.19: Renamed method from create_blueprint to blueprint If
instance attribute exists, use this is as the blueprint else create the blueprint. Support for endpoint
prefixing

*Returns An instantiated Flask Blueprint instance
Return type flask.blueprints.Blueprint

routes_module

Generates the routes module path, this is built from self.module and
self.routes_module_name.

Returns Python dotted path to the routes module containing routes.

Return type str

class flask_via.routers.default.Functional (url, func, endpoint=None)

Bases: flask_via.routers.BaseRouter

A basic Flask router, used for the most basic form of flask routes, namely functionally based views which would
normally use the @route decorator.

New in version 2014.05.19.

Example

from flask.ext.via.routes import default
from yourapp.views import foo_view, bar_view

routes = [
default.Functional (' /foo’, "foo’, foo_view),
default.Functional (/ /bar’, ’'bar’, bar_view),
]
__init__ (url, func, endpoint=None)

Basic router constructor, stores passed arguments on the instance.
Parameters
e url (str) — The url to use for the route
* func (function) — The view function to connect the route with

Keyword Arguments endpoint (st7; optional) — Optional endpoint string, by default flask will
use the view function name as the endpoint name, use this argument to change the endpoint
name.

add_to_app (app, **kwargs)

Adds the url route to the flask application object.mro
Changed in version 2014.05.08: url_prefix can now be prefixed if present in kwargs

Changed in version 2014.05.19: endpoint can now be prefixed if present in kwargs

*Parameters
* app (flask.app.Flask) — Flask application instance

o *¥*kwargs — Arbitrary keyword arguments passed into init_app

26

Chapter 5. Reference

Flask-Via, Release 2014.05.19

class flask_via.routers.default.Pluggable (url, view, endpoint, **kwargs)
Bases: flask_via.routers.BaseRouter

Pluggable View router class, allows Flask pluggable view routes to be added to the flask application.
New in version 2014.05.06.

Example

from flask.ext.via.routers import flask
from flask.views import MethodView

class FooView (MethodView) :
def get (self):
return ’'foo view’

class BarView (MethodView) :
def get (self):
return ’'bar view’

routes = [
flask.Pluggable(’/’, FooView, ’foo’)
flask.Pluggable(’/’, BarView, ’bar’)
]

__init__ (url, view, endpoint, **kwargs)
Pluggable router constructor, stores passed arguments on instance.

Changed in version 2014.05.19: Added view argument Added endpoint argument

*Parameters
e url (str) — The url to use for the route

¢ view (class) — The Flask pluggable view class, for example: * flask.views.View *
flask.views.MethodView

* endpoint (str) — The Flask endpoint name for the view, this is required for Flask pluggable
views.

o **kwargs — Arbitrary keyword arguments for add_url_rule
add_to_app (app, **kwargs)
Adds the url route to the flask application object.

Changed in version 2014.05.19: Updated add_ur1_rule to support endpoint prefixing and support new
way of defining Pluggable views

Parameters
* app (flask.app.Flask) — Flask application instance

o *¥*kwargs — Arbitrary keyword arguments passed into init_app

5.1.5 flask_via.routers.restful

Routers for the Flask-Restful framework.

5.1. API 27

Flask-Via, Release 2014.05.19

class flask_via.routers.restful.Resource (url, resource, endpoint=None)
Bases: flask_via.routers.BaseRouter

The Resource router allows you to define Flask-Restful routes and have those API resources added to the ap-
plication automatically. For this to work you must at init_app time pass a optional keyword argument
restful_api to init_app with its value being the restful api extension instance.

New in version 2014.05.06.

Example

Flask (__name_)
restful .Api (app)

app
api

class FooResource (restful.Resource) :

def get (self):

return {’'hello’: ’"world’}
routes = |
Resource (’ /foo’, FooResource)
]
via = Via()

via.init_app (

app,
routes_module=’flask_ via.examples.restful’,
restful_api=api)

if _ name_ == '__ _main_ ’:
app.run (debug=True)

__init__ (url, resource, endpoint=None)
Constructor for flask restful resource router.
Parameters
e url (str) — The url to use for the route
e resource — A flask rest ful .Resource resource class

Keyword Arguments endpoint (st7; optional) — Optional, override Flask—-Restful auto-
matic endpoint naming

add_to_app (app, **kwargs)
Adds the restul api resource route to the application.

Parameters
* app (flask.app.Flask) — Flask application instance, this is ignored.
o *¥*kwargs — Arbitrary keyword arguments

Raises Not ImplementedError —If restful_api is not provided

5.1.6 flask via.routers.admin

Routers for the Flask-Admin framework.

28 Chapter 5. Reference

Flask-Via, Release 2014.05.19

class flask_via.routers.admin.AdminRoute (view)
Bases: flask_via.routers.BaseRouter

The Admin router allows you to define Flask-Admin routes and have those views added to the application
automatically. For this to work you must at init_app time pass a optional keyword argument f1ask_admin
to init_app with its value being the Flask-Aadmin extension instance.

New in version 2014.05.08.

Note: Flask-Admin has its own way of handling defining urls so this router literally only requires the
Flask-Admin view class.

Example

app = Flask (__name_)

admin = Admin (name=’Admin’)
admin.init_app (app)

class FooAdminView (BaseView) :

Qexpose (' /')
def index(self):
return ’' foo’

routes = [
AdminRoute (FooAdminView (name='Foo’))

via = Via()
via.init_app (

app,
routes_module=’ flask_via.examples.admin’,
flask_admin=admin)

if name == '__main_ ’:

app.run (debug=True)
__init__ (view)
Admin route constructor, this router handles adding Flask—admin views to the application.
Parameters view (flask_admin.base.AdminViewMeta) — The Flask Admin View Class

add_to_app (app, **kwargs)
Adds the Flask—Admin View to the Flask the application.

Parameters
* app (flask.app.Flask) — Flask application instance, this is ignored.
o **kwargs — Arbitrary keyword arguments

Raises NotImplementedError —If flask_admin is not provided

5.1. API 29

Flask-Via, Release 2014.05.19

5.2 Change Log

5.2.1 2014.05.19

* Feature: Include now supports endpoint prefixing

* Feature: Blueprint router can now take a blueprint instance

* Feature: Added support for VIA_ROUTES_NAME to set a common routes name
* Deprecated: Basic Router in favour of the Functional router

e Improved: P1luggable Router API is now cleaner

* Improved: Test Suite now uses PyTest

e Improved: ImproperlyConfigured now raised if routes module is not defined in either init_app or in
application configuration via VIA_ROUTES_MODULE

5.2.2 2014.05.08

¢ Feature: Flask Admin Router

* Feature: Include url_prefix option

5.2.3 2014.05.06

* Feature: Flask extension initialisation

* Feature: Basic and Pluggable Flask Routers
* Feature: Flask-Restful Router

 Feature: Ability to include other routes

 Feature: Ability to register blueprints

5.3 Contributors

Without the work of these people or organisations this project would not be possible, we salute you.
¢ Soon London: http://thisissoon.com | @thisissoon
 Chris Reeves: @krak3n
* Greg Reed: @peeklondon
¢ Jack Saunders: @jackqu?

30 Chapter 5. Reference

http://thisissoon.com

CHAPTER 6

Indices and tables

* genindex
* modindex

e search

31

Flask-Via, Release 2014.05.19

32

Chapter 6. Indices and tables

Python Module Index

f

flask_via, ??
flask_via.exceptions, ??
flask_via.routers, ??
flask_via.routers.admin, ??
flask_via.routers.default, ??
flask_via.routers.restful, ??

33

